Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Section: Research Program

Modelling and analysis

Hazardous flows are complex physical phenomena that can hardly be represented by shallow water type systems of partial differential equations (PDEs). In this domain, the research program is devoted to the derivation and analysis of reduced complexity models compared to the Navier-Stokes equations, but relaxing the shallow water assumptions. The main purpose is then to obtain models well-adapted to the physical phenomena at stake.

Even if the resulting models do not strictly belong to the family of hyperbolic systems, they exhibit hyperbolic features: the analysis and discretisation techniques we intend to develop have connections with those used for hyperbolic conservation laws. It is worth noticing that the need for robust and efficient numerical procedures is reinforced by the smallness of dissipative effects in geophysical models which therefore generate singular solutions and instabilities.

On the one hand, the derivation of the Saint-Venant system from the Navier-Stokes equations is based on two approximations (the so-called shallow water assumptions), namely

As a consequence the objective is to get rid of these two assumptions, one after the other, in order to obtain models accurately approximating the incompressible Euler or Navier-Stokes equations.

On the other hand, many applications require the coupling with non-hydrodynamic equations, as in the case of micro-algae production or erosion processes. These new equations comprise non-hyperbolic features and a special analysis is needed.

Multilayer approach

As for the first shallow water assumption, multi-layer systems were proposed to describe the flow as a superposition of Saint-Venant type systems [26], [29], [30]. Even if this approach has provided interesting results, layers are considered separate and non-miscible fluids, which implies strong limitations. That is why we proposed a slightly different approach [27], [28] based on a Galerkin type decomposition along the vertical axis of all variables and leading, both for the model and its discretisation, to more accurate results.

A kinetic representation of our multilayer model allows to derive robust numerical schemes endowed with crucial properties such as: consistency, conservativity, positivity, preservation of equilibria, ...  It is one of the major achievements of the team but it needs to be analyzed and extended in several directions namely:

Non-hydrostatic models

The hydrostatic assumption consists in neglecting the vertical acceleration of the fluid. It is considered valid for a large class of geophysical flows but is restrictive in various situations where the dispersive effects (like wave propagation) cannot be neglected. For instance, when a wave reaches the coast, bathymetry variations give a vertical acceleration to the fluid that strongly modifies the wave characteristics and especially its height.

Processing an asymptotic expansion (w.r.t. the aspect ratio for shallow water flows) into the Navier-Stokes equations, we obtain at the leading order the Saint-Venant system. Going one step further leads to a vertically averaged version of the Euler/Navier-Stokes equations involving some non-hydrostatic terms. This model has several advantages:

Multi-physics modelling

The coupling of hydrodynamic equations with other equations in order to model interactions between complex systems represents an important part of the team research. More precisely, three multi-physics systems are investigated. More details about the industrial impact of these studies are presented in the following section.

Data assimilation and inverse modelling

In environmental applications, the most accurate numerical models remain subject to uncertainties that originate from their parameters and shortcomings in their physical formulations. It is often desirable to quantify the resulting uncertainties in a model forecast. The propagation of the uncertainties may require the generation of ensembles of simulations that ideally sample from the probability density function of the forecast variables. Classical approaches rely on multiple models and on Monte Carlo simulations. The applied perturbations need to be calibrated for the ensemble of simulations to properly sample the uncertainties. Calibrations involve ensemble scores that compare the consistency between the ensemble simulations and the observational data. The computational requirements are so high that designing fast surrogate models or metamodels is often required.

In order to reduce the uncertainties, the fixed or mobile observations of various origins and accuracies can be merged with the simulation results. The uncertainties in the observations and their representativeness also need to be quantified in the process. The assimilation strategy can be formulated in terms of state estimation or parameter estimation (also called inverse modelling). Different algorithms are employed for static and dynamic models, for analyses and forecasts. A challenging question lies in the optimization of the observational network for the assimilation to be the most efficient at a given observational cost.